
LA-UR-21-31286
Approved for public release; distribution is unlimited.

Title: Partial program correctness

Author(s): Herring, Stuart Davis

Intended for: WG21 teleconferences
Web

Issued: 2021-11-12

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

P1494R2: Partial program correctness
Audience: EWG; CWG; LEWG; WG14
S. Davis Herring <herring@lanl.gov>
Los Alamos National Laboratory
November 10, 2021

History
r2:

Discussed the preexisting problem of input dependence
Discussed interactions with other kinds of observable behavior
Discussed lack of debugger support
Fixed (preexisting) “first” in wording based on SG1 review

r1:

Made introduction explicitly independent of contracts
Fixed conditionals in example

Problem
Undefined behavior enables and extends many important optimizations (e.g., simplifying signed integer arithmetic and dead-code elimination).
The “time travel” aspect of such optimizations (explicitly authorized by [intro.abstract]/5) is surprising to many programmers in that it can
sometimes eliminate tests meant to detect the invalid operation in question. In particular, consider

#include<cstdio>
#include<cstdlib>

static void bad(const char *msg) {
 std::fputs(msg, stderr);
#ifdef DIE
 std::abort();
#endif
}

void inc(int *p) {
 if(!p) bad("Null!\n");
 ++*p;
}

Without -DDIE, a conforming implementation can elide the test in inc entirely: std::fputs always returns, so any call inc(nullptr) is
guaranteed to have undefined behavior and need not call bad. (Note that current implementations do not do so in this case.)

This issue came up again recently in the discussion of contracts:

void f(int *p) [[expects: p]] [[expects: *p<5]];

Discomfort with the idea that (with continuation mode “on”) the first contract-attribute-specifier might be elided because of the second was one of
the motivations for the many late proposals to change (and eventually remove) contracts. Many wondered about the possibility of making a
contract violation handler “opaque to optimization”, so that the first precondition must be checked on the supposition that the handler might not
return (but rather throw or terminate).

The capability of establishing such a “checkpoint”, where subsequent program behavior, even if undefined, does not affect the preceding behavior,
would be useful in general for purposes of stability and debugging.

There is already an analogous issue concerning program input: clearly a program can have undefined behavior for some inputs and not others.
[intro.abstract]/3 and /5 acknowledge this by referring to “a given input” and “that input”, but such a monolithic approach neglects the paradoxical
possibility of input correlated with, say, unspecified quantities:

int x[1];

int main() {
 std::uintptr_t a=reinterpret_cast<std::uintptr_t>(x)%3+1,b;
 std::cerr << "The car is behind door number " << a

mailto:herring@lanl.gov
http://wiki.edg.com/pub/Wg21sandiego2018/EvolutionWorkingGroup/p1343-contracts-update.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r0.pdf#subsection.A.1

 << ". Door to open: ";
 std::cin >> b;
 return x[a-b];
}

This program might suggest 2 (if the cast yields, say, 0x1000), but one could absurdly argue that responding with 2 leads to undefined behavior
because almost all of the unspecified possibilities for the “address” of x (e.g., 0x2000) lead to undefined behavior for that input. An OOTA
interpretation is also available: “a is really 3, so the input 2 leads to undefined behavior, whose effect is to print 2 instead of a”. We should reject
this on the grounds of causality, since we require that undefined behavior respect input which can quite reasonably depend on prior output.

The standard does not have the necessary notion of prior, and this paper does not address this situation, but its checkpoints may be used to
strengthen the guarantee of /6.3, that prompts are delivered before waiting for input, to include all observable behavior. This usage does exclude
the OOTA interpretation: the output delivered to the host environment must accurately represent a if it is separated by a checkpoint from any
potential undefined behavior.

Previous work
I suggested a trick involving a volatile variable, based on the idea that a volatile read is observable behavior ([intro.abstract]/6) that must be
preserved by optimization.

inline void log(const char *msg)
{std::fputs(msg, stderr);} // always returns

bool on_fire() {
 static volatile bool fire; // always false
 return fire;
}

void f(int *p) {
 if (p == nullptr) log("bad thing 1");
 if (on_fire()) std::abort();
 if (*p >= 5) log("bad thing 2");
}

The idea is that the compiler cannot assume that on_fire() returns false, and so the check for p being null cannot be eliminated. However, the
compiler can observe that, if p is null, the behavior will be undefined unless on_fire() returns true, and so it can elide that check (though not the
volatile read) and call abort(). This therefore seems to convey a certain capability of observing the upcoming undefined behavior without
actually experiencing it.

Unfortunately, conforming implementations are not constrained to follow this analysis. It is logically necessary that the implementation perform
the observable volatile read unless it can somehow obtain its result otherwise. However, after reading the value false (as of course it will be in
practice) the implementation may take any action whatsoever, even “undoing” the call to log. For example, it would be permissible to perform the
implicit flush for stderr only just before the call to std::abort (which never happens). One might hope for the implementation to allow for the
possibility that log affects some hardware state that affects the volatile read, but it might not as such a scheme would require support from the
operating system.

General solution
We can instead introduce a special library function

namespace std {
 // in <cstdlib>
 void observable() noexcept;
}

that divides the program’s execution into epochs, each of which has its own observable behavior. If any epoch completes without undefined
behavior occurring, the implementation is required to exhibit the epoch’s observable behavior. Ending an epoch is nonetheless distinct from
ending the program: for example, there is no automatic flushing of <cstdio> streams.

Undefined behavior in one epoch may obscure the observable behavior of a previous epoch (for example, by re-opening an output file), but
external mechanisms such as pipes to a logging process can be used to guarantee receipt of an epoch’s output. With multiple threads, it is not the
epochs themselves that are meaningful but their boundaries (or checkpoints); normal thread synchronization is required for the observable
behavior of one thread to be included in an checkpoint defined by another.

As a practical matter, a compiler can implement std::observable efficiently as an intrinsic that counts as a possible termination, which the
optimizer thus cannot remove. After optimization (including any link-time optimization), the code generator can then produce zero machine
instructions for it.

Note that std::observable does not itself constitute observable behavior, and it does not forgive infinite empty loops ([intro.progress]/1). There

http://lists.isocpp.org/ext/2018/11/6427.php

is no explicit connection to volatile access, but the ordinary happens-before rules apply (as much as possible given the vacuous
[intro.abstract]/6.1). Finally, there is no guarantee that, for instance, local variables have been spilled to registers at each checkpoint:
std::observable prevents certain program reorderings, but it is not a general aid for comprehensibility when using a debugger. (In general, it is
difficult if not impossible to specify semantics that allow optimization and yet behave correctly when presented with input from a user equipped
with a debugger.)

Limited assumptions
A call to std::observable prevents the propagation of assumptions based on the potential for undefined behavior after it into code before it. The
following functions offer the same opportunities for dead-code elimination:

void a(int &r, int *p) {
 if (!p) std::fprintf(stderr, "count: %d\n", ++r);
 if (!p) std::abort(); // henceforth, p is known to be non-null
 if (!p) std::fprintf(stderr, "p is null\n");
}

void b(int &r, int *p) {
 if (!p) std::fprintf(stderr, "count: %d\n", ++r);
 std::observable();
 if (!p) std::fprintf(stderr, "p is null\n");
 *p += r; // p may be assumed non-null
}

In both cases, the “p is null” output can be elided: in a, because execution would not continue past the std::abort; in b, because of the following
dereference of p. In both cases, the count output must appear if p is null: in a, because the program thereafter has the defined behavior of aborting;
in b, because the epoch ends before undefined behavior occurs.

The function b, however, offers the additional optimization of not checking for null pointers at run time. It is very useful to support such
optimizations without compromising diagnostics.

Usage
The obvious place to use std::observable is after any sort of I/O that always returns, especially in any code run when an error is detected (and
so imminent undefined behavior is likely). In a contracts context, the violation handler is one such routine; since std::observable() has no side
effects, it would also be permissible to include it in specific contract conditions to guarantee that previous contracts are checked (even if the
violation handler always returns):

void f(int *p) [[expects: p]] [[expects: (std::observable(), *p<5)]];

Wording
Relative to N4901.

Add a paragraph before [intro.abstract]/5:

- An observable checkpoint is a call to std::observable ([support.start.term]) or program termination.

Change [intro.abstract]/5 as follows:

- A conforming implementation executing a well-formed program shall produce the same observable behavior as one of the possible
executions of the corresponding instance of the abstract machine with the same program and the same input. However, if any such
execution contains an undefined operation, this document places no requirements on the implementation executing that program with
that input (not even with regard to operations preceding the firstfor only those operations O for which for every undefined operation)
U there is an observable checkpoint C such that O happens before C and C happens before U.

[Note: The undefined behavior that arises from a data race ([intro.races]) happens on all participating threads. — end note]

Change [intro.abstract]/6.2 as follows:

- At program terminationAt each observable checkpoint, all data whose delivery to the host environment to be written into filesto any
file happens before that checkpoint shall be identical to one of the possible results that execution of the program according to the
abstract semantics would have produced. [Note: Not all host environments provide access to file contents before program termination.
— end note]

[Drafting note: The phrase “delivery to … any file” refers to C11 7.21.5.2/2. — end note]

Add to [cstdlib.syn]:

- [[noreturn]] void quick_exit(int status) noexcept;

void observable() noexcept;

Add paragraphs to the end of [support.start.term]:

- void observable() noexcept;

- Effects: Establishes an observable checkpoint ([intro.abstract]). No other effects.

